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On the Quantum Langevin Equation 
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The quantum Langevin equation is the Heisenberg equation of motion for the 
(operator) coordinate of a Brownian particle coupled to a heat bath. We give an 
elementary derivation of this equation for a simple coupled-oscillator model of 
the heat bath. 
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1. I N T R O D U C T I O N  

Some 20 years ago, in a paper  written jointly with Peter Mazur,  we presen- 
ted a discussion of  the statistical mechanics of  a coupled-oscil lator model  of 
a heat bath. ~1) This model  enabled us to obtain  the quan tum mechanical  
form of the Langevin equat ion for a Brownian particle moving in an exter- 
nal potential. Ou r  purpose here is to repeat this derivation, using a dif- 
ferent, some would say simpler, oscillator model  of the heat bath. 
Repeating the discussion will enable us to lay a different emphasis on cer- 
tain aspects of  the derivation and of  the equat ion itself, aspects that  have 
become of interest in the intervening years. 

As in our  earlier paper,  for simplicity we restrict our  considerations to 
a particle moving in one dimension; it will be seen that this is not  an essen- 
tial restriction. In this case the quan tum Langevin equat ion is the (Heisen- 
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berg) equation of motion for the particle coordinate operator x(t)  and 
takes the form 

m2 + ~2 + V'(x) = F(t) (1) 

where V(x) is the external potential and F(t) is an operator-valued random 
force, with (symmetric) correlation 

-~ (F( t )  F(O) + F(O) F(t) ) = do he) coth(hco/2kT) cos cot (2) 

and with commutator 

- 2ih~ do) co sin cot = 2ih~6'(t) (3) IF(t), F(0)]  = 

In addition F(t) has the Gaussian property: correlations of an odd number 
of factors of F vanish, and symmetric correlations of an even number of 
factors are equal to the sum of products of pair correlations, the sum being 
over all pairings. 

We shall have more to say about this remarkable equation in Sec- 
tion 3. Here we only emphasize that it is a contracted description of the 
particle motion. The heat bath, which we shall see must have an infinite 
number of degrees of freedom, is described by a single parameter ~, the fric- 
tion constant. This parameter (together with the absolute temperature T) 
specifies the statistical properties of the random force, as given by the 
correlation, as well as its commutator. 

In the next section we introduce the model and give a succinct 
derivation of the above results. As with our earlier model, with it we are 
able to carry through what we call the program of Gibbs. To paraphrase 
our earlier paper, this program goes as follows. 

(i) Solve the mechanical equations of motion for the system con- 
sisting of the Brownian particle coupled to the heat bath. The solution will 
consist of explicit expressions for the dynamical variables at time t in terms 
of their initial values. 

(ii) Assume that the initial variables of the heat bath are somehow 
statistically distributed, in our case according to the canonical ensemble. 

(iii) Show that the coordinate operator for the Brownian particle 
then satisfies the quantum Langevin equation. 

This last step in the program has a pair of aspects that should perhaps 
be emphasized. The first is that the quantum Langevin equation is a 
limiting, idealized equation, which is only approximately correct for any 
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real system. This means therefore that it can be obtained as an exact con- 
sequence of the program only by specializing the model, i.e., by making 
special assumptions about the parameters of the model. The second aspect 
is that for short times the description that results from steps (i) and (ii) will 
in general reflect the assumed initial state of the heat bath. It is only after a 
short relaxation period, during which initial transients decay and the par- 
ticle "forgets" the initial state, that the quantum Langevin equation, 
characterized by the friction constant above, can arise. 

2. THE M O D E L  A N D  THE DERIVATION OF THE 
EQUATIONS 

The model we consider is that of the Brownian particle surrounded by 
a large number of independent heat bath particles, each attached to the 
Brownian particle by a spring. The Hamiltonian of the system is then 

p2 F p ,  = 1 2 l 
| '~ +skj(qj-x) J (4) H = ~ m +  V(x)+~ L2mj 

Here x and p are the coordinate and momentum operators of the Brownian 
particle, while qy and py are those of the j th heat bath particle. The mass of 
this j th heat bath particle is my and the spring attaching it to the Brownian 
particle has spring constant ky. Finally, V(x) is the potential energy of the 
external force on the Brownian particle. 

We should emphasize that this model is by no means original, it 
appears in one guise or another frequently in the literature. (2) The earliest 
appearance we have found is in a paper by Magalinskij, (3) although we 
have not made a careful search and there may welt be earlier appearances. 

To this Hamiltonian we must append the canonical (equal-time) com- 
mutation relations: 

Ix, p ]  = ih, [qj, p~] = ih6j~ (5) 

and all other commutators vanish. The equations of motion for the time- 
dependent (Heisenberg) operators are then obtained using the Heisenberg 
equation: 

ihO = [O, H]  (6) 

which gives the time derivative (denoted by the superposed dot) of an 
arbitrary operator O. We then get 

2=(1/m)p, b= -V'(x)+~'kj(qj-x) (7) 
J 
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for the Brownian particle, and 

(tj= (1/mj)pj, pi= - k j ( q j - x )  (8) 

for the j t h  heat bath particle. 
The oscillator equations (8) are simple to solve and we can write 

qj(t) = qj(0) cos o~jt + pj(0)(sin ~jt)/mj~o~ 

fo + x(t) - x(O) cos chit- dt' cos ~oj(t- t') 2(t') (9) 

where the natural frequency of the oscillator is 

~oj = (Umj) 1/2 (lO) 

When this result is put in the right-hand side of the particle equations (7), 
they can be written in the form 

mYc + dt' B ( t -  t') A(t') + V'(x) + B(t) x(O) = F(t) 

where the force operator F(t) is given by 

(11) 

and where 

F(t) = ~ [qj(O) kj cos ~ojt + &(O) ~j sin ~o;t] 
J 

(t2) 

8 ( 0  = Y~ kj cos ~j t  (t3) 
J 

Note that in Eq. (11) the initial variables of the heat bath, i.e., the qj(0) and 
pj(0), occur in F(t); otherwise only the variables of the particle occur. With 
this result we have completed step (i) in the program outlined in the 
introduction. 

In the next step we introduce the statistical average over the initial 
variables of the heat bath. We do this by assuming that at t = 0 the 
oscillators are canonically distributed with respect to the free oscillator 
Hamiltonian: 

Ho = ~ (�89 p~/mj + �89 (14) 
J 

We therefore introduce the expectation for an arbitrary operator O: 

( O )  -- Tr{O exp(-Ho/kT)} /Tr{exp(-Ho/kT)}  (15) 
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where the (partial) trace is with respect to the coordinates of the 
oscillators. It is straightforward to show that (1'4) 

( p  j(0) pk(O) ) = c3jk h coth(hco/2kT) 
(qj(O) qk(O) ) = (mjcoj)2 2m/a  j 

(16) 
1 

(qj(0) pk(0)) = - (p t , (0)qj (0)  ) = ~  ihfj k 

In addition we have the Gaussian property: the expectation of an odd 
number of factors of the qj(0) and pj(0) vanishes; the expectation of an 
even number of factors is the sum of products of pair expectations with the 
order of the factors preserved. With these results we find for the symmetric 
correlation of the force operator (12), 

�89 F(t) g(t') + F(t') F(t) ) 

= ~ �89 coth[hcoj(2kT) cos coj(t-  t ')] (17) 
J 

and, of course, F(t) has the Gaussian property, which follows from the 
corresponding property of the products of the q;(0) and pj(0). Finally, from 
the canonical commulation rules (5) we find 

[F(t), F(t ' )]  = - ih  ~ kjcoj sin coj(t - t') (18) 
J 

With these results we have carried out step (ii) of our program. 
Equation (11) together with the properties of the force operator we 

have just obtained is not yet the quantum Langevin equation, although it 
begins to look close. Comparing the second term in (11) with the 
corresponding term in the quantum Langevin equation (1), we see that 
they will be the same if 

B(t) = 2ff6(t) (19) 

Comparing this with the expression (13) for B(t) in terms of the frequencies 
and force constants of the bath oscillators, we see that B(t) cannot be of 
this form unless there are an infinite number of oscillators in the bath and 
their frequencies are continuously distributed. In that case we can write 

B(t) = J o  dco N(co) k(co) cos cot (20) 

where N(co)dco is the number of oscillators whose natural frequency is 
between co and co + dco and k(co) is the (average) force constant of the 
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oscillators whose frequency is c0. Now, if we compare (19) and (21) we see 
that to obtain the former we must choose 

N(co) k(co)= 2~/7z (21) 

Thus, the force-constant-weighted spectrum of oscillator frequencies must 
be uniform, corresponding to white noise. When we make this same choice 
of the spectrum in the formulas (17) and (18) they become exactly the for- 
mulas (2) and (3), respectively. Thus, with this choice of the spectrum, 
Eq. (11) becomes exactly the quantum Langevin equation (1) except for the 
added term 

B(t) x(0) = 2~x(0) 6(t) (22) 

on the left-hand side. It is at this point that we complete the third step in 
our program by asserting that the general quantum Langevin equation will 
arise out of a model calculation such as ours only after a short relaxation 
period. In our model the duration of this period is infinitesimal, so that 
after any finite interval of time we obtain the quantum Langevin equation. 
We should emphasize that this last step is, so to speak, an artifact of the 
method; it is required only because one has for convenience made very 
special assumptions about the initial state of the system. 

3. R E M A R K S  

We conclude with a few brief remarks upon the quantum Langevin 
equation and its derivation. The first is that the equation is somehow 
universal. We mean this in the same sense as the classical Langevin 
equation is regarded as universal: there are a number of nontrivial exam- 
ples of systems that, at least approximately, satisfy the equation and the 
form of the equation is the same for all. In particular here "form of the 
equation" means that the operator force must have the Gaussian property 
and that the correlation and commutator must have the forms (2) and (3), 
respectively. 

Since we have derived the quantum Langevin equation (either here or 
in our earlier paper) only for very special oscillator models, one might 
wonder to what extent we have demonstrated the universality of the 
equation. The answer, of course, is that we have not. Rather, the logic is 
reversed: /f there is a universal description, then it must be of the form we 
have obtained. 

In fact, one can do a bit more. Elsewhere, in a separate paper by one 
of us (G.W.F.), it will be shown that in fact the forms (2) and (3) of the 
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correlation and the commutator are a general result of the fluctuation-dis- 
sipation theorem and are therefore independent of model. On the other 
hand, the Gaussian property of the force operator does not seem to follow 
from such general considerations, but is implied by the models. 

However, there is a more compelling reason to believe in the universal 
character of the form of the equation. That is, only with this form--by 
which we mean Eq. (1), the correlation (2), the commutator (3), and the 
Gaussian property of the force operator F(t)-Kloes one have the approach 
to the correct equilibrium state. To be specific, the stationary solution of 
(1) should correspond to the equilibrium state. In particular, if one forms 
the moments of this solution, then in the weak coupling limit (i.e., [--. 0) 
they should correspond to the canonical distribution among the levels of 
the particle in a potential V(x). Explicitly, one should be able to 
demonstrate the result 

lim (x(t)N) = 2 e--G'/kT(~n, XN~Cn)/~n e--E"/kT (23) 
~ 0  n 

where x(t) is the stationary solution of the quantum Langevin equation 
(1), while on the right-hand side the ~,  are the normalized eigenfunctions 
and E, the corresponding eigenvalues of the Schr6dinger equation: 

h2 d 2 ] 
2mdx 2 t- V(x) Ip,,=E.4,,, (24) 

In fact, to prove this in general is an open problem. It has, however, been 
shown by Benguria and Kac that it holds to third order in perturbation for 
the perturbed harmonic oscillator. ~5"6) 
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